René Götz - Identifikation von nutzerorientierten Produktähnlichkeiten mithilfe künstlicher Intelligenz für Empfehlungsagenten in der Kleidungsindustrie
Lieferung & Versand
Für diesen Artikel wurde keine geeignete Versandart ermittelt. Bitte melden Sie sich bei uns.
- Zahlungsarten:
Über das Buch
Zum Inhalt
Die hohe Produktvielfalt im Onlinehandel führt bei den Konsumenten häufig zu einer Überforderung und schließlich zum Kaufabbruch. Um dieser Informationsflut entgegenzuwirken, kommen Methoden der Produktempfehlung zum Einsatz, die individuell und personalisiert Produkte dem Konsumenten zur Verfügung stellen können. Die Produktvorschläge basieren dabei auf dem historischen Klick- und Kaufverhalten und sollen somit die Präferenzen und Wünsche der Konsumenten widerspiegeln. Das Klickverhalten allein reicht jedoch oftmals nicht aus, um den Konsumenten vollumfänglich verstehen und das Verhalten interpretieren zu können. Der Autor dieser Studie betrachtet zunächst verschiedene Datenquellen, die die Präferenzen bezüglich bestimmter Produkte aus einer Konsumentensicht abbilden können. Explizite Kundenmeinungen in Form von Produktrezensionen sowie das Klickverhalten, Produktbilder und Produktattribute liefern hierbei relevante Perspektiven. Unstrukturierte Textdaten werden zunächst mithilfe von Methoden des Natural Language Processing vorverarbeitet und in ein einheitliches Datenmodell überführt. Das Set an Produktattribute beinhaltet vorwiegend Informationen bezüglich verschiedener Farbmetriken (Sättigung, Helligkeit etc.) und dem Vorhandensein einzelner Konstruktions- und Designelemente eines Produkts. Anhand des Klickverhaltens der Konsumenten lassen sich Produkte identifizieren, welche häufig zusammen innerhalb einer Session angesehen werden. Die verschiedenen Datenquellen werden dazu verwendet, um Produktähnlichkeiten identifizieren zu können. Hierbei kommen Methoden des Machine Learning (Word2Vec) und Deep Learning (Variational Autoencoder) zum Einsatz. Das Ergebnis der Algorithmen ist die Darstellung von Produkten als Vektoren in einem multidimensionalen Vektorraum, welche anhand der Distanzen miteinander verglichen werden können. Die verschiedenen Perspektiven auf Produktähnlichkeiten werden anhand des Anwendungsfalls der Produktempfehlung untersucht und…
Schlagworte
Wirtschaftsinformatik, Betriebswirtschaft, Informatik, Produktempfehlungen, Empfehlungsagent, Deep Learning, Machine Learning, Kleidungsindustrie, KI, Intelligenz, AI, Autoencoder, Word2Vec, Natural Language Processing, Technology Acceptance Model, Design Science Research
-
FachdisziplinWirtschaftsinformatik & Informationsmanagement
-
SchriftenreiheStudien zur Wirtschaftsinformatik
-
ISSN1435-6295
-
Band108
Lieferzeit
Zahlungsarten
Sie können via Paypal, Kreditkartenzahlung oder Vorkasse bezahlen. Firmenkunden können auf Rechnung kaufen.
Lieferzeit
Die Lieferzeit innerhalb Deutschlands beträgt üblicherweise 2 bis 3 Werktage ab Zahlungseingang. Bei Bestellungen an Wochenenden und Feiertagen verzögert sich die Auslieferung entsprechend.
Paket-Versand
Einige Artikel werden aufgrund ihrer Größe, Menge und/oder ihres Gewichtes als Paket versendet.
Verzögerungen
Sollten einige Artikel kurzfristig nicht lieferbar sein oder sich die versprochene Lieferzeit verzögern, werden Sie per E-Mail von uns darüber informiert.
Logistikpartner
Die bestellten Artikel werden von uns schnellstmöglich verpackt und unserem Logistikpartner versandfertig übergeben. Bitte beachten Sie, dass wir auf Verzögerungen, die von unserem Logistikpartner verursacht sind, keinen Einfluss haben.
Sendungsverfolgung
Anhand Ihrer Paket-Identnummer/Sendungsnummer können Sie jederzeit den aktuellen Sendungsstatus Ihres Paketes erfahren. Weitere Informationen zur Sendungsverfolgung erhalten Sie in Ihrer Lieferbestätigung per eMail.
Kontakt
Sie erreichen unseren Kundenservice telefonisch unter 040 398880 0 sowie per E-Mail unter shop@verlagdrkovac.de.