Tim Vintis - Klassifikationsverfahren zur Risikobewertung von Jahresabschlüssen
Eine empirische Analyse fehlerhafter Jahresabschlüsse deutscher Unternehmen
Lieferung & Versand
Für diesen Artikel wurde keine geeignete Versandart ermittelt. Bitte melden Sie sich bei uns.
- Zahlungsarten:
Über das Buch
Zum Inhalt
Informationen des Jahresabschlusses dienen für eine Vielzahl externer Adressaten als wesentliche Informationsquelle zur Entscheidungsfindung. Trotz zahlreicher Kontrollinstanzen kommt es regelmäßig zu Bilanzskandalen, durch die die derzeitigen Kontrollmechanismen auf den Prüfstand gestellt werden. Gleichzeitig sehen sich Prüfer im Zuge der Digitalisierung mit komplexeren Unternehmenssystemen und -daten konfrontiert, wodurch effizientere Prüfungen zwingend notwendig werden.
Die Frage, ob ein Jahresabschluss manipuliert worden ist oder nicht, kann statistisch als Klassifikationsproblem verstanden werden. Klassifikationsverfahren des maschinellen Lernens sind in der Lage, adäquate Risikobeurteilungen zu fällen, auf deren Basis eine mögliche Fallauswahl zu prüfender Abschlüsse getroffen werden kann und die eine Festlegung des Prüfungsumfangs in Abwägung des Risikos ermöglicht.
Im Rahmen dieser Untersuchung werden verschiedene Methoden des maschinellen Lernens sowie die Kombination dieser Verfahren durch Ensemble-Methoden dargestellt und deren Güte empirisch aus Basis der area under the curve (AUC) von receiver operating characteristic-Kurven (ROC-Kurven) überprüft. Als Datengrundlage dienen Abschlüsse deutscher Unternehmen, bei denen ein nicht uneingeschränkter Bestätigungsvermerk vorgelegen hat oder eine Fehlerfeststellung des Enforcement bekannt gemacht worden ist. Die Gruppe nicht-fehlerhafte Abschlüsse wurde über ein k-nearest-neighbor basiertes Matchingverfahren identifiziert.
Die Ergebnisse zeigen, dass insbesondere durch die Verwendung von Ensemble-Methoden eine hohe Klassifikationsgüte erzielt werden kann. Die praktischen Einsatzmöglichkeiten der Verfahren werden am Fall der Wirecard AG dargestellt. Unter Berücksichtigung weiterer Kriterien wie Einfachheit, Verständlichkeit und Implementierbarkeit werden die Einsatzmöglichkeiten im derzeitigen Kontrollsystem von Jahresabschlüssen diskutiert. [...]
Schlagworte
Klassifikationsverfahren, Jahresabschluss, Manipulation, Maschinelles Lernen, Fraud detection, Wirtschaftsprüfung, Betriebsprüfung, Statistik, Enforcement, Künstliche Intelligenz, Datenanalyse, Rechnungswesen, Bilanzskandale, Wirecard, Artificial Intelligence, AI, KI
-
FachdisziplinMarketing & Absatz
-
SchriftenreiheQM – Quantitative Methoden in Forschung und Praxis
-
ISSN1610-0735
-
Band53
Lieferzeit
Zahlungsarten
Sie können via Paypal, Kreditkartenzahlung oder Vorkasse bezahlen. Firmenkunden können auf Rechnung kaufen.
Lieferzeit
Die Lieferzeit innerhalb Deutschlands beträgt üblicherweise 2 bis 3 Werktage ab Zahlungseingang. Bei Bestellungen an Wochenenden und Feiertagen verzögert sich die Auslieferung entsprechend.
Paket-Versand
Einige Artikel werden aufgrund ihrer Größe, Menge und/oder ihres Gewichtes als Paket versendet.
Verzögerungen
Sollten einige Artikel kurzfristig nicht lieferbar sein oder sich die versprochene Lieferzeit verzögern, werden Sie per E-Mail von uns darüber informiert.
Logistikpartner
Die bestellten Artikel werden von uns schnellstmöglich verpackt und unserem Logistikpartner versandfertig übergeben. Bitte beachten Sie, dass wir auf Verzögerungen, die von unserem Logistikpartner verursacht sind, keinen Einfluss haben.
Sendungsverfolgung
Anhand Ihrer Paket-Identnummer/Sendungsnummer können Sie jederzeit den aktuellen Sendungsstatus Ihres Paketes erfahren. Weitere Informationen zur Sendungsverfolgung erhalten Sie in Ihrer Lieferbestätigung per eMail.
Kontakt
Sie erreichen unseren Kundenservice telefonisch unter 040 398880 0 sowie per E-Mail unter shop@verlagdrkovac.de.